Scott G. Warren


     Year Entered: 2009

     Degrees Received:
     University of Florida
     Materials Engineering major, Mathematics minor
     B.S., 2009

     Thesis Advisor: Geoff Ghose, PhD

     Thesis Research: Learning is thought to occur through long-lasting
     changes in the cerebral cortex, but the rules and mechanisms
     governing how brain circuitry changes with training remain uncertain. In
     particular, electrophysiology and functional imaging studies have shown
     distinct and conflicting roles for primary visual cortex (V1) during visual
     training. Cellular recording from macaque V1 has demonstrated no
     change in neuronal firing rate or in orientation tuning attributable to
     visual training. Functional magnetic resonance imaging (fMRI) of human V1, however, has demonstrated increased activity in response to visual training. Additionally, the extent to which changes in neuronal activity are occurring in higher-order visual areas during these training paradigms is unknown.

Scott aims to better characterize the process of visual learning by combining electrophysiology and fMRI in a single study targeting multiple visual areas. This will enable the investigation of changes in neuronal activity at the level of single neurons, of local neuronal populations (using local field potentials), and of very large populations (using fMRI). Understanding the process of visual learning at each of these scales in a healthy animal will provide a stronger framework for investigating the pathologies which are present in humans with learning impairments and with mental disorders involving defects in sensory processing.